Prevalence of malnutrition among under-fives in Okrika Town, Nigeria

Authors: Okari TG,¹ Nte AR,² Frank-Briggs AI²

¹Department of Paediatrics, Rivers State University Teaching Hospital, Port Harcourt, Rivers State, Nigeria. ²Department of Paediatrics, University of Port Harcourt Teaching Hospital, Rivers State, Nigeria. Corresponding author: Dr Okari Tamunoiyowuna Grace

Abstract: Malnutrition is a public health problem in developing countries and an underlying factor in one-thir d of the 6.6 million global under-five deaths recorded in 2012. Malnutrition is still prevalent in Nigeria as, 35.8 % and 10% of Nigerian under-fives were stunted and wasted respectively in 2011. The study was undertaken to determine the prevalence of malnutrition among under-fives in Okrika Town in South-South region of Nigeria. It was a cross sectional descriptive study that obtained data on socio-demographics and nutritional history from the caregivers of 410 children selected by multistage random sampling. Their measured weights and heigh ts were used to calculate their WAZ, HAZ and WHZ anthropometric indices. Children with WAZ, HAZ and WHZ <-2SD were classified as underweight, stunted and wasted respectively and overweight if WHZ was > +2SD The 410 children were aged 0-59 months. Forty three (10.5%) were underweight, 56 (13.6%) stunted, 36 (8.8%) wasted and 6 (1.5%) overweight. There were no statistically significant differences in the prevalence of under

wasted and 0(1.5%) overweight. There were no statistically significant aligerences in the prevalence of underweight, stunting and wasting among males and female under-fives, (p > 0.05). Conclusion: Stunting was the most prevalent and overweight least prevalent forms of malnutrition among under

Conclusion: Stunting was the most prevalent and overweight least prevalent forms of malnutrition among under -fives in Okrika Town.

Keywords: Malnutrition, stunting, under-fives, underweight, wasting.

Date of Submission: 18-12-2018 Date of acceptance: 03-01-2019

I. Introduction

The nutritional status of children is a reflection of their overall health and children are expected to gro w maximally and be well developed if they are well cared for, fed appropriately and protected from recurrent ch ildhood illnesses.^{1,2} Therefore, the nutritional status of a child may be normal or abnormal.³ Abnormal nutritiona l status, also referred to as malnutrition ranges from undernutrition on one hand to overnutrition on the other ha nd. Undernutrition is the deficiency of one or more essential nutrients especially protein and calories or impaire d metabolism of these nutrients while overnutrition is an excess of one or more nutrients, usually of protein and energy.^{3,4} Undernutrition of protein and energy manifests as underweight, wasting and stunting while overnutrit ion manifests as overweight and obesity.⁵

Malnutrition is a major contributor to childhood morbidity and mortality. It was a direct or underlying cause of death of 6.6 million under-fives globally in 2012.^{6,7} It has been reported that malnutrition is more preva lent in Asia and sub-Saharan Africa, as 90% of the world's stunted under-fives live in these regions.⁸ The preval ence of stunting, underweight and wasting among under-fives in Nigeria as at 2011 stood at 35.8%, 24.2% and 10.2%.²

The causes of malnutrition among under-fives are often multi-factorial and in most cases inter woven. These include household food security, food intake and metabolism, maternal and child care practices, childhoo d diseases, safe and healthy environment, socio-economic factors, political wars and conflicts among others. Th ese factors determine to a large extent the prevalence of malnutrition in a locality.^{1,8}

Okrika Town a sub urban community in Rivers State, Nigeria, was one of the communities engulfed by the Niger Delta armed militia crisis between 2004 and 2008. This resulted to illegal activities such as destructio n of oil pipelines, oil bunkering activities and gang violence. These activities in turn led to increased oil spills, d estruction of the ecosystem, clashes between rival groups, destruction of lives and properties and internal displa cement of people in affected communities.⁹ In addition, the crisis had devastating effects on the socioeconomic activities in affected towns and there was a drastic reduction in oil exploration in the region.¹⁰ Studies have sho wn that this kind of situation impacts negatively on the nutritional status of the vulnerable, especially the underfives.^{11,12} The study was therefore undertaken to determine the prevalence of malnutrition in Okrika Town.

II. Materials and methods

A cross sectional descriptive study was carried out in Okrika Town, the headquarters of Okrika Local Government Area, Rivers State, Nigeria. Ethical approval for the study was obtained from the Ethics Committe e of the University of Port Harcourt Teaching Hospital and permission obtained from the Okrika Local Govern ment Authority. Multistage random sampling was used to select 410 underfives from 410 households from the c ommunities in the town. Informed consent was obtained from the caregivers of recruited children. Data on soci o-demographic characteristics and nutritional history were collected through an interviewer administered questi onnaire. The children were weighed, their supine lengths (for children less than 2yrs) or heights (for those age d 2yrs and above) measured and their anthropometric indices; weight-for-age (WAZ), height-for-age (HAZ) and weight-for-height (WHZ) calculated using WHO Anthro 3.2 calculator. Children who had WAZ, HAZ and WH Z Z scores below -2SD were classified as underweight, stunted and wasted respectively. Those with WAZ, HA Z and WHZ Z scores below -3SD were classified as overweight malnutrition. The test of statistical signific cance was set at p value <0.05 at 95% confidence interval.

III. Results

Four hundred and ten children in Okrika Town participated in the study, comprised of 217 (52.9%) mal es and 193 (47.1%) females, giving a male: female ratio of 1.1:1. They were aged 0-59 months with mean age o f 26.61 \pm 15.95 months, 96 (23.4%) were aged 12-23 months and 37 (9%) aged 0-6 months (Table 1).

The mean WAZ, HAZ and WHZ scores for the study population were -0.61 ± 1.19 , -0.58 ± 1.37 and -0.39 + 1.16 SD respectively. Table II shows the nutritional status of the children with 27 (7.1%) underweight, 1 4 (3.4%) severely stunted, 6 (1.5%) severely wasted and 6 (1.5%) overweight. Fig.1 shows the global prevalenc e of underweight, stunting, wasting and overweight malnutrition among under-five children in Okrika. Underweight malnutrition was most prevalent (16.2%) among children aged 36-47 months and stunting most among thos e aged 48-59 months. Among children aged < 6 months 10.8% were overweight and 3.8% of children aged 6-11 months were overweight. There were no statistically significant differences in the prevalence of malnutrition in the different age groups, (Fig 2). The prevalence of underweight malnutrition was higher among females than males but the difference was not statistically significant, (Table III). There were no statistically significant differences from households with less than 6 pers ons and those living in households with 6 or more persons.

Among the 408 (99.5%) children who were breastfed, 254 (62.3%) children had breastfeeding commen ced within one hour of delivery, 65 (15.9%) children had prelacteal feeds and 173 (46.3%) of the 373 children a ged 6-59 months were exclusively breastfed for six months. Two hundred and ninety three (71.8%) children had stopped breastfeeding. The duration of breastfeeding was 0.5 to 36 (mean 13.9 ± 4.06) months. Three hundred and eighty one (92.9%) children had commenced complementary feeding from age 1 - 18 (mean 5.9 + 2.3) mon ths with 233 (61.2%) starting at age 6 - 8 months, 122 (32%) at age <6 months and 26 (6.8%) at age > 8 months . Children who were exclusively breastfed for 6 months had lower prevalence rates of wasting (8.6%), stunting (13.3%) and underweight malnutrition (9.8%) compared to those who were not, (Fig 3). The observed difference s were however not statistically significant, (p> 0.05), (Fig 3). The prevalence of underweight malnutrition was higher among children who commenced complementary feeds before 6 months (10.7%) compared to those who commenced after 8 months (3.8%). The difference was however not statistically significant. Of the 370 childre n aged 6-59 months who received semi-solid/solid foods, 150 (40.5%) received the recommended minimum fre quency of feeds per day. The prevalence rates of underweight (6.7%), stunting (10%) and wasting (6.7%), were lower in children who received the recommended minimum frequency of semi-solid/solid foods, but the observ ed differences were not statistically significant, (p > 0.05), (Table III).

Age Group (months)	Female No	Male No	Total No (%)
0-5	20	17	37(9.0)
6-11	30	23	53(12.9)
12-23	41	55	96(23.4)
24-35	47	46	93(22.7)
36-47	31	43	74(18.0)
48-59	24	33	57(13.9)
Total	193 (47.1%)	217 (52.9%)	410 (100)

Table I: Age and sex distribution of the study population.

Table II: Nutritional status of the study population using anthropometric indices						
Anthropometr	Severely malnourish	Moderately Malno	Normal	Overnutrition	Total (%)	
ic indices	ed (<-3SD)	urished		(> 2SD)		
			(-2SD - < 2SD)	. ,		
		(-3SD - <2SD)				
WAZ	14 (3.4)	29 (7.1)	367 (89.5)	-	410 (100)	
HAZ	14 (3.4)	42 (10.2)	354 (86.4)	-	410 (100)	
WHZ	6 (1.5)	30 (7.3)	368 (89.8)	6 (1.5)	410 (100)	

Table II: Nutritional status of the study population using anthropometric indices

Gender	Underweight		Stunting		Wasting	
	Yes	No	Yes	No	Yes	No
	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)
Female (N=193)	23 (11.9)	170 (88.1)	27 (14.0)	166 (86.0)	16 (8.3)	177 (91.7)
Male (N=217)	20 (9.2)	197 (90.8)	29 (13.4)	188 (86.6)	20 (9.2)	197 (90.8)
Total	43 (10.5)	367 (89.5)	56 (13.6)	354 (86.4)	36 (8.8)	374 (91.2)
χ^2	0.794		0.034		0.109	
p value	0.373		0.854		0.741	

Table III: Gender and nutritional status

Table IV: Recommended minimum frequency of feeding with semi-solid/solid foods per day and nutritio nal status of under-fives.

Minimum frequency of feeds per day	N	Underweight		Stunting		Wasting	
		Yes N (%)	No N (%)	Yes N (%)	No N (%)	Yes N (%)	No N (%)
Appropriate	150	10 (6.7)	140 (93.3)	15 (10.0)	135 (90.0)	10 (6.7)	140 (93.3)
Inappropriate	220	27 (12.3)	190 (87.7)	34 (15.4)	186 (84.6)	20 (9.1)	200 (90.9)
Total	370	37 (10.0)	333 (90.0)	49 (13.2)	321 (86.8)	30 (8.1)	340 (91.9)
χ^2		3.114		1.859		0.704	
P value		0.077		0.172		0.444	

Figures_

Figure 1: Global prevalence of different forms of malnutrition among the study population.

Prevalence of Different forms of malnutrition among the age groups

Figure 2: The prevalence of various forms of malnutrition among the age groups.

IV. Discussion

The 10.3% prevalence of underweight malnutrition found in this study was comparable to the 8.5% rep orted in Akure South Local Government Area in Ondo State, Nigeria, a study carried out in an urban communiti y^{13} It was however lower when compared to studies carried out in rural communities in Nigeria such as 15.5% r eported by Sebanjo et al in Ifewara, in Osun State,¹⁴ and 29% in Babban Dodo, Zaria.¹⁵ Similarly, the prevalenc e of wasting in this study is comparable to those reported in semi urban settlements in Aguata, Anambra State, Nigeria (7.7%)¹⁶ and 6.9% in the Akwapim North District in the Eastern region of Ghana.¹⁷ It was however low er than the 17% reported by Ojiako and Ikpi in rural communities in Kano and Kaduna States in Nigeria.¹⁸ The 13.6% prevalence of stunting in this study was comparable to the findings from studies carried out in similar ur ban communities in Akure Local Government Area, Nigeria¹³ and a semi urban community in Akuapim, Ghana.¹⁷ It was however lower than the prevalence rates of 26.7 – 69% reported in nutritional surveys of under-fives ca rried out in a rural communities in Ifewara, Osun State,¹⁴ Kano and Kaduna States¹⁸ and Daura and Zango Local Government Areas in Katsina State, Nigeria.¹⁹ The lower prevalence of malnutrition found in this study being a semi urban community, in comparison to rural communities was not surprising, as malnutrition is reportedly hi gher in rural communities.^{20,21} This could be as a result of the more prevalent levels of poverty, food insecurity, lower educational status of the caregivers in the rural communities. In addition, ignorance on the part of the care givers in the rural communities on appropriate feeding practices that promote optimal growth and development of the under fives could be contributory. Similar to reports from other studies,^{15,22} this study also found stunting to be more prevalent in female than male under-fives. In contrast, the Demographic and Health Surveys in Nige ria²³ and Ghana²⁴ reported that males were more stunted and wasted than females. The higher prevalence of und erweight malnutrition in females in this study was comparable to that reported by Ndiku²⁵ in Kenya but contrast s with the findings of Zere²⁶ in South Africa who found no difference in the prevalence of underweight malnutri tion among male and female under-fives. Although the reasons for the gender differences in the nutritional statu s of under-fives in this study was not certain, the study in Kenya²⁵ reported that females consistently had lower f ood and calorie intake than males, which could explain their poorer nutritional status.

The low prevalence of wasting and underweight malnutrition in the first six months of life and thereaft er increasing in the 6-11 month age group compared favourably with other reports in Africa^{2,11,15} and Asia.^{27,28} T his could be as a result of the protective effect of breastfeeding in the first six months of life and the lower calor ie intake after six months as the children had to adjust from breast milk to complementary foods.^{11,29,30} Followin g a decline at 6-11 months, the rising prevalence of stunting from 12-23 months and peaking at 48-59 months i n the present study was similar to that reported by Abwola et al¹¹ in Uganda, Ruwali²⁸ in Nepal and Nguhen²⁷ in Vietnam. Studies have attributed this to the cessation of breastfeeding and the sole reliance of children in this a ge group on family diet which may be consumed in portions that are inadequate to promote optimal growth and development.^{11,30} The prevalence of overweight malnutrition in this study was low and compares favourably wit h those from other developing countries.²⁷

Studies in Nigeria,^{2,29,31} other parts of Africa^{32,33} and Asia²⁷ have also reported that a high proportion (95 -99.8%) of under-fives were breastfed as found in this study. However the 46.3% prevalence rate of exclusive b reastfeeding for six months found in this study is lower than the 80% reported by Ajao et al in Ile Ife²⁹ and 64% reported by Amsalu et al in Ethiopia³³ but higher than 31.2% in Ifewara,¹⁴ 23.5% in India³⁴ and 17.1% reported in Vietnam.²⁷ This is probably because of sociocultural differences and attitude of caregivers to exclusive breast feeding. In comparison to findings in other studies in Nigeria,^{14,29} and India,³⁴ this study also found no statistical ly significant relationship between exclusive breastfeeding for six months and the prevalence of wasting, stuntin g and underweight malnutrition, probably because a large proportion of children in the first six months were stil I receiving breast milk in their diet.

The frequency and appropriateness of complementary foods given to under-fives is a contributing facto r to their growth and development.^{3,23} Teshome et al³⁰ in Ethiopia reported that age at commencement of comple mentary foods did not statistically significantly affect the nutritional status of under-fives as reported in this stud y. Teshome et al³⁰ also reported that although not statistically significant, children who did not receive the reco mmended minimum frequency of meals per day were more likely to be malnourished, in agreement with the res ult of the present study. Ruwali et al²⁸ however reported a statistically significantly elevated risk of stunting and underweight malnutrition among children who did not receive the minimum frequency of feeds. These findings underscore the need to counsel caregivers on appropriate methods of feeding their children in order for them to grow optimally.

V. Conclusion

Malnutrition was prevalent among under-fives in Okrika Town and undernutrition was more prevalent than overnutrition with stunting as the most prevalent form of malnutrition. Caregivers should be encouraged to exclusively breastfeed their children in the first six months of life and give adequate complementary foods that will promote the growth and development of their children.

Acknowledgement

We acknowledge the contributions of the Department of Health, Okrika Local Government Area in Rivers State , Nigeria, and all the assistants in the field.

Conflict of interest: The authors declare that there was no conflict of interest.

References

[1]. United Nations Children's Fund. Tracking Progress on Child and Maternal Nutrition. A survival and development priority. New York: United Nations Children's Fund; 2009.

- [3]. Ebenebe J, Ulasi TO. Nutrition and nutritional assessment in childhood. In: Azubuike JC, Nkanginieme KEO (eds). Paediatrics and Child Health in a Tropical Region. 2nd ed. Owerri: Nigeria African Educational Services, 2007; 240-249.
- [4]. World Health Organization and UNICEF. WHO child growth standards and the identification of severe acute malnutrition in infants and children. A joint statement by World Health Organization and United Nations Children's Fund. Geneva: WHO and UNICEF;

^{[2].} National Bureau of Statistics. Monitoring the Situation of Children and Women. Findings from the Nigeria Multiple Indicator Cluster Survey 2011. Main Report. Abuja: National Bureau of Statistics; 2011.

2009.

- [5]. Blössner M, De Onis M. Malnutrition: quantifying the health impact at national and local levels. WHO Environmental Burden of Disease Series, No. 12.Geneva: World Health Organization; 2005.
- [6]. World Health Organization and UNICEF. Countdown to 2015.Maternal, newborn and child survival. Building a future for women and children. The 2012 Report. Geneva: World Health Organization and UNICEF; 2012.
- [7]. United Nations Children's Fund. In numbers, every child counts. Revealing disparities, advancing children's right. The state of the world's children 2014. New York: UNICEF; 2014.
- [8]. United Nations Children's Fund. Improving child nutrition. The achievable imperative for global progress. New York: UNICEF; 2013.
- [9]. Ezeibe C, Nnamani DO. National security and President Yar'adua's amnesty programme in the Niger Delta: a political economy of peace making process. J Soc Sci Public Policy 2010; 2: 107-114.
- [10]. Emuedo CO. Challenges to sustainable peace and security beyond the amnesty in the Niger Delta, Nigeria. Afro Asia J Soc Sci 2013; 4: 1-20.
- [11]. Abwola O, Edison M, Hanifa B, Christopher O. Factors associated with malnutrition among children in internally displaced person's camp. Afr Health Sci 2008; 8: 244-252
- [12]. Olack B, Burk B, Cosmos L, Bamrah S, Dooling K, Feikin DR et al. Nutritional status of under-five children living in an informal urban settlement in Nairobi, Kenya. J Health PopulNutr 2011; 29: 357-363.
- [13]. Akorede QJ, Abiola OM. Assessment of nutritional status of under-five children in Akure South Local Government, Ondo State. Int J Res Rev ApplSci 2013; 14: 671-681.
- [14]. Senbanjo IO, Adeodu OO, Adejuyigbe EA. Influence of socioeconomic factors on nutritional status of children in a rural community of Osun State, Nigerian. Asia Pac J ClinNutr 2006; 15: 491-495.
- [15]. Sufiyan MB, Bashir SS, Umar AA. Effect of maternal literacy on nutritional status of children under 5 years of age in the Babban-Dodo community Zaria City, North West Nigeria. Ann Nig Med 2012; 6: 61-64.
- [16]. Okoroigwe FC, Okeke EC. Nutritional status of preschool children in Aguata L.G.A of Anambra State, Nigeria. Int J NutrMetab 2009; 1: 9-13
- [17]. Anderson AK, Bignell W, Winful S, Soyiri I, Steiner-Asiedu M. Risk factors for malnutrition among children 5 years and younger in the Akuapim North District in the Eastern Region of Ghana. Curr Res J BiolSci 2010; 2: 183-188.
- [18]. Ojiako IA, Manyong VM, Ikpi AE. Determinants of nutritional status of preschool children from rural households in Kaduna and Kano States, Nigeria. Pak J Nutr 2009; 9: 1497-1505.
- [19]. Andert C in collaboration with Save The Children and Katsina State Government. Nutritional anthropometric survey in Daura and Zango Local Government Areas, Katsina State, Nigeria. Katsina: Save The Children; 2010.
- [20]. Pelletier DL. The relationship between child anthropometry and mortality in developing countries: Implications for policy, programs and future research. J Nutr 1994; 124 (suppl 10): 2047-2081.
- [21]. Ramil E, Agho KE, Inder KJ, Bowe SJ, Jacobs J, Dibley MJ. Prevalence and risk factors for stunting and severe stunting among under-fives in North Maluku province of Indonesia. BMC Pediatr 2009; 64: 1-10.
- [22]. Kariuki KN, Monari JM, Kibui MM, Mwirichia MA, Zani KK, Tetei M et al. Prevalence and risk factors of malnutrition. J Natl Inst Public Health 2002; 51: 44-50.
- [23]. National Population Commission, Nigeria and ICF Macro. Nigeria Demographic and Health Survey 2008. Abuja: National Population Commission and ICF Macro; 2009.
- [24]. Ghana Statistical Service (GSS), Noguchi Memorial Institute for Medical Research (NMIMR), and ORC Macro. Ghana Demographic and Health Survey 2003. Accra Ghana: GSS, NMIMR and ORC Macro; 2004.
- [25]. Ndiku M, Jaceldo-Siegl K, Singh P, Sabate J. Gender inequality in food intake and nutritional status of children under 5 years old in rural Eastern Kenya.Euro J ClinNutr 2011; 65: 26–31.
- [26]. ZereE, McIntyreD. Inequities in under-five child malnutrition in South Africa. Int J Equity Health 2003; 2:7.
- [27]. Nguyen HN, Sin K. Nutritional status and the characteristics related to malnutrition in children under-five years of age in Nghean Vietnam. J Prev Med Public Health 2008; 41:232-240.
- [28]. Ruwali D. Nutritional status of children under-five years of age and factors associated in Padampur VDC, Chitwan. Health Prosp 2011; 4: 14-18.
- [29]. Ajao KO, Ojofeitimi EO, Adebayo AA, Fatusi AO, Afolabi OT. Influence of family size, household food security status and child care practices on the nutritional status of under-five children in Ile Ife. Afr J Reprod Health 2010; 14: 123-132.
- [30]. Teshome B, Kogi-Makau W, Getahun Z, Zaye G. Magnitude and determinants of stunting in children under-fiveyears of age in food surplus region of Ethiopia: The caseof West Gojam Zone. Ethiop. J Health Dev 2009; 23: 98-106.
- [31]. Awogbenja MD, Ugwuoma FU. Feeding practices and nutritional status of under-five children in Nasarawa State. Prod Agric Technol J 2010; 6: 23-35.
- [32]. Lespiato MS, Smuts CM, Hanekom SM, Du Plessis J, Faber M. Risk factors of poor anthropometric status in children under-five years of age, living in rural districts of Eastern Cape and Kwazulu-Natal provinces in South Africa. S Afr J ClinNutr 2010; 23: 202-207.
- [33]. Amsalu S, Tigabu Z. Risk factors for severe acute malnutrition in children under the age of five. A case control study. Ethiop J Health Dev 2008; 22: 21-25.
- [34]. Dinesh K, Goel NK, Mittal PC, Misra P. Influence of infant feeding practices on nutritional status of under-five children. Indian J Pediatr 2006; 73: 417-421.

Dr Okari Tamunoiyowuna Grace. "Prevalence of malnutrition among under-fives in Okrika Town, Nigeria."." IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), vol. 18, no. 1, 2019, pp 4 0-45.